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ABSTRACT

We are interested in building structured overlapping grids for geometries defined by computer-aided-design (CAD)
packages. Geometric information defining the boundaxy surfaces of a computation domain is often provided in the
form of a collection of possibly hundreds of trimmed patches. The first step in buildlng an overlapping volume grid
on such a geometry is to build overlapping surface grids. A surface grid is typically built using hyperbolic grid
generation; starting horn a curve on the surface, a grid is grown by marching over the surface. A given hyperbolic
grid will typically cover many of the underlying CAD surface patches. The fundamental operation needed for building
surface grids is that of projecting a point in space onto the closest point on the CAD surface. We describe an fast
algorithm for performing this projection, it will make use of a fairly coarse global triangulation of the CAD geometry.
We describe how to build this global triangulation by first determining the connectivity of the CAD surface patches.
This step is necessary since it often the case that the CAD description will contain no information specifying how
a given patch connects to other neighboring patches. Determining the connectivity is difficult since the surface
patches may contain mistakes such as gaps or overlaps between neighboring patches.

Keywords: CAD models, grid generation, overlapping grids, hyperbolic, surface grids

1. INTRODUCTION

In this paper we describe a fast method to gener-
ate hyperbolic surface grids on CAD geometries.
We are motivated by the problem of grid gen-
eration on geometrical configurations defined by
computer aided design (CAD) programs. In our
approach we build a set of structured overlap-
ping grids [6] that cover the computational do-
main. The grids are allowed to overlap which sim-
plifies the grid construction process compared to
the multi-block approach. The overlapping grids
are connected through interpolation. The loca-
tion of the interpolation points and “hole regions”
(parts of grids that are unused) are computed au-
tomatically using the Ogen overlapping grid gen-

erator [7]. Ogen is part of the Overture object
oriented framework which can be used to generate
grids and solve partial differential equations [1, 2].

The first step in building overlapping volume grids
is the generation of a set of overlapping surface
grids. Both the surface and volume grids are typi-
cally generated using a hyperbolic marching algo-
rithm [8]. The description of the geometry is of-
ten in the form of a collection of trimmed patches,
see figure (1). The output from a CAD program
will often be saved in a standard file format such
as IGES or the newer STEP specification. The
description defines a boundary-representation (B-
REP) of the geometry, as opposed to say a solid-
model representation. Unfortunately the typical
IGES output file does not include any connectiv-



ity (topology) information, that is there is no in-
formation specifying how a given patch connects
to other neighboring patches. To further com-
plicate matters the trimmed patches will often be
inaccurate, or contain mistakes, making it diffi-
cult to determine where two neighboring patches
should be joined. As a first step in the grid gener-
ation process this connectivity information must
be determined. As a second step we build a global
triangulation of the surface where the triangula-
tion will respect the boundaries of the trimmed
patches. The fundamental operation needed for
building surface grids is that of projecting a point
in space onto the closest point on the CAD sur-
face. The global triangulation will be used to aid
in this projection step. In order to project a point
onto the surface we first project onto the global
triangulation and then project onto a particular
surface patch.

Figure 1. A CAD geometry represented as a col-
lection of trimmed surface patches. No connectivity
information is provided in the IGES file.

The approach we take to determine the connec-
tivity of patched CAD model is based on the
“Edge-Curve” approach described by Steinbren-
ner, Wyman and Chawner [11]. In this tech-
nique we first build curves (edge-curves) on the
boundaries of all trimmed-patches and then at-
tempt to identify where an edge-curve from one
patch matches to the edge curve of a neighbori-
ng patch. It is usually necessary to split the edge
curves at appropriate locations in order to perform
the matching. When two edge-curves are identi-

fied to be the same we say the edges have been
merged and choose one edge-curve to define the
boundary segment for both patches. By merging
edge curves we effectively remove any gaps or over-
laps present in the original representation. The de-
tails of algorithm described here differ in a variety
of ways from that of Steinbrenner et al. [11] such
as in the representation of the edge curves, the
order of the merging and splitting operations and
the data structures used for searching. Once the
edge curves have been matched we then can form a
global triangulation for the patched surface. The
first step in forming this global triangulation is
to build a triangulation on each trimmed patch.
The triangulation of each patch is performed in
the two-dimensional parameter space, permitting
the use of fast triangulation algorithms. The trian-
gulation on each patch will have boundary nodes
that are defined by the merged edge-curves. Thk
means that the separate surface triangulations can
be connected together since they will share bound-
ary nodes with a neighboring patch.

The global triangulation serves as a basis for a fast
projection algorithm for projecting points onto the
patched surface. This projection algorithm is used
by the hyperbolic surface grid generator. The pro-
jection algorithm can also be useful for other pur-
poses such building a high quality surface triangu-
lation. To project a point onto the patched surface
we first project the point onto the global triangu-
lation. Finding the closest triangle is performed
by a walklng-algorithm if an initial guess is known
or by a global search using an alternating-digital-
tree (ADT) tree. Since each triangle belongs to
just one sub-patch we can then project the point
onto the sub-patch using Newton’s method. The
hyperbolic grid generator solves a set of hyperbolic
equations to generate a surface grid starting from
some initial curve. At each step, the positions of
the new grid points are predicted from values of
the current grid points and the normal to the sur-
face. The predicted points are then projected onto
the patch surface.

The algorithms we describe here have been im-
plemented within the Overture object oriented
framework and will be made available with the
Overture software which can be obtained from
http: //www. llnl. gov/case/Overture.

2. DETERMINING THE CONNECTIVITY OF

A PATCHED SURFACE

A patched-surface consists of a set of sub-surfaces.
There are often hundreds of sub-surfaces. A sub-
surface may defined in a variety of ways such as



Figure 2. The trimmed patch (top) is formed from
an untrimmed surface (middle) and a set of one or
more trimming curves (bottom). The untrimmed sur-
face is a mapping from two-dimensional parameter
space into three-dimensional cartesian space. The
trimming curves are defined in parameter space.

with a spline, B-spline or non-uniform-rational-
bspline (NURBS). In general the sub-surface will
be trimmed, in which case only a portion of the
surface will be used, the valid region is defined by
trimming curves, see figure (2).

It is often the case that the CAD file contains no
topology information, that is there is no informa-
tion to say which sub-surface connects to which
other sub-surfaces. The purpose of the connectiv-
ity algorithm is to determine how the sub-surfaces
are joined to one another. Once the connection
information is computed a triangulation for the
whole surface can be found.

A useful feature of the connectivity algorithm is
that it will aid in the discovery of errors in the
trimmed surfaces. Gross errors in the trimming

curves are detected when the geometry is first read
from the database file. Errors detected at this ini-
tial step include trim curves that lie outside the
unit square in parameter space, trim curves that
don’t close on themselves (i.e. they should be pe-
riodic), and trim curves that self-intersect. These
gross errors should be fixed before proceeding to
the connectivity stage. In Overture we have the
ability to edit the trim curves to fix these types of
errors. Errors detected at the connectivity stage
would include large gaps between patches or mul-
tiple definition of patches (sometimes the exact
same trimmed patch may appear more than once
in the CAD file!). These errors are usually eas-
ily found by visually inspecting the set of merged
and unmerged curves. There should, for example,
only be unmerged curves on the boundary of the
surface.

There are two main steps in determining how sub-
surfaces are connected:

build edge curves : build curve-segments that
lie on the boundary of each sub-surface. A
sub-surface defined by a NURBS, for exam-
ple, will have 4 boundary curve segments.
A sub-surface defined by a trimmed-mapping
will have boundary segments corresponding
to each trimming curve. A single trimming
curve may be split into multiple boundary-
segments, if the trimming curve was originally
represented that way in the CAD file, or if the
curve was split at corners.

merge/split edge curves : We examine the
curve-segments to look for mat thing seg-
ments. If two segments agree (as a few num-
ber of points to some tolerance) we declare
that the segments are the same (i.e. that
they both represent the true boundary curve).
Where two segments are the same, we also
declare that their respective sub-surfaces are
joined. It may be necessary to split a curve-
segment into two or more pieces so that the
pieces can be joined to other segments. Af-
ter merging all possible curve-segments we
should have matched all sub-surfaces where
they join other sub-surfaces, thus determin-
ing the topology of the surface.

Trimming curves are usually defined in the two-
dimensional parameter space of the patch. In or-
der to compare edge-curves from different patches
we must build three-dimensional representations
for the edge curves. In some cases we can build
an exact representation of the edge curve. For ex-
ample, if the edge curve is a parameter line on a
NURBS then the edge curve is itself a NURBS.



Figure 3. Figure showing the three stages of deter-
mining the connectivity. Edge curves are built on
each side of each patch (top). The edge curves are
merged and then split and merged (middle). Green
curves have been merged, blue and red curves have
not been merged. A red curve is an original curve
that has been split. Triangulations are built sepa-
rately for each patch and then stitched together at
thecommon boundary points (bottom).

In other cases it would be too difficult to build
an exact remesentation of the curve so instead.
we sample the curve at some appropriate num-
ber of points and then fit a curve to these points.
The two-dimensional arclength and curvature of
the curve are used to determine how many points
to use. Usuallv we ~arameterize the 3D edge-curve. .
using the parameterization of the 2D t~lmming
curve unless the parameterization is poor and
then we parametrize by the three-dimensional ar-
clength. Usually a single trimming curve will be
remesented in the CAD file as a collection of sub-
cu~ves with each sub-curve being smooth. Nor-
mally when a trimming curve is created from a

CAD file these sub-curves are merged into a sin-
gle composite curve. In addition to the compos-
ite curve we also keep the the original sub-curves.
These sub-curves will usually correspond to the
curve of intersection between two surface patches
and thus be exactly the edge-curves that we wish
to merge. In some cases a trimming curve will not
be smooth; a piece-wise linear NURBS can have
sharp corners, and even higher-order NURBS can
represent corners using multiple knots. Such trim-
ming curves are split into smooth sub-curves by
looklng for multiple knots and detecting corners
where the tangent changes rapidly.

After the edge curves have been built we then at-
tempt to merge the edge curves. The merging step
consists of two phases, see figure (3). In the first
phase we examine all the original edge curves and
look for matching curves. We use an alternating-
digital-tree (ADT) to search for possible match-
ing edge-curves. The ADT tree holds the bound-
ing box for each edge curve. To determine if a
given edge curve, e, matches to some other edge
curve we put a small box around one end-point
of e and search for intersections with the bound-
ing boxes of other edge curves. For any candidate
edge-curve found in this way we then check more
carefully that the curves agree at the end points
and some number of interior points. In practice
we have only found it necessary to compare the
edge-curves at the end points and the midpoint.
If two edges agree then we define the edges to be
merged. One of the edge curves is defined to be
the true edge curve. In the second phase we con-
sider all curves that were not merged in the first
phase. We attempt to split these curves into sub-
curves which may then be merged. An edge curve
can be split where it touches the end-point of an-
other edge curve. For each un-merged edge we
look for the endpoints of nearby edge-curves that
will cause a split. The same ADT tree is used to
locate edge curves whose end points could cause
a split. A split is not allowed if the split position
lies very close to the start or end of the un-merged
edge.

We also tried another technique to determine
the connectivity. In this alternative method
we first triangulated each trimmed-patch and
then attempted to stitch together neighboring
patches by adding boundary nodes of one patch-
triangulation to a nearby patch-triangulation.
This latter method worked reasonably well in
many cases but ran into difficulties when the
trimmed patches did not match very well (overlap-
ping patches were especially troublesome) and for
patches containing very thin regions. In contrast,
the edge-curve merging approach works well since



it assumes the boundaries of the trimmed-patches
consist of piecewise smooth segments that should
either match to a smooth segment of a neighbori-
ng patch or be on the boundaxy of the surface.
This assumption is correct for the CAD surfaces
that we deal with.

3. BUILDING A GLOBAL TRIANGULATION

A global triangulation can be built once the edge
curves have been merged. Recall that when two
edge curves are merged, one of the two curves is
defined to be the true edge curve. The global tri-
angulation is formed by first triangulating each
surface patch. The surface patches are triangu-
lated in the parameter space of the patch. This
allows us to use fast two-dimensional triangula-
tion algorithms. We use the “triangle” program
from Shewchuk [9] to compute a constrained De-
launay triangulation. It uses a divide and conquer
algorithm to first build an unconstrained triangu-
lation. The triangulation algorithm starts with
a collection of edges that define the boundaries
of the trimmed patch in parameter space. Each
edge has two end-points. The end-points are taken
from points on the trimming curve. The trim-
ming curve will be defined in terms of the true
edge curves computed in the merging step. This
ensures that the boundary nodes of the triangula-
tion of a patch will match to the boundary nodes
of the triangulation of neighboring patches. To
improve the quality of the triangulation we ini-
tially add additional nodes to the interior of the
triangulation and allow triangle to also add new
nodes, however, we prevent new nodes from being
added to the boundary. The quality of the tri-
angles is also improved by scaling the parameter
space coordinates, (To, rl ) by a transformation of
the form (Fo, Fl) = ((rQ + r~rl)ro, (TC+ r~ro)rl).
The parameters r., rb, rC,rd depend on the aspect
ratio of the patch.

Since the merged edge-curve is defined in three-
dimensional space we must determine the corre-
sponding parameter space coordinates for nodes
on the edge-curve. In some cases the parameter
space coordinates are known from the time when
the edge-curve was generated. In other cases we
must project the 3D points onto the surface patch.
In addition to being more expensive this projec-
tion step can also be error prone if the surface-
patch is defined by a poor parameterization. For
example, it it not uncommon that the surface has
a coordinate singularity where one face is collapsed
to a point. We double check the result of the pro-
jection step by comparing the projected 3D point
to the original point being projected. If these

Figure 4. Global triangulation for the diesel engine
geometry. The triangulation respects the bound-
aries between the surface-patches and will be used
to project points onto the original CAD representa-
tion.

points are not close we instead project the point
onto the boundary edge of the surface.

After the patch has been triangulated in param-
eter space it is a simple matter to map the 2D
parameter space nodes to 3D. The triangulations
for the patches must be stitched together to form
a global triangulation. We begin by joining the
triangulations from the first two patches to form a
valid global triangulation. The triangulation from
patch three is then stitched to this global triangu-
lation. The process is repeated until all triangula-
tions have been added.

For each trimmed-patch we keep a list its trimming
curves. Each trimming curve keeps pointers to the
possibly two patches that use it (determined when
the edge curves were merged). We use thk infor-
mation to determine whether a new patch is con-
nected to any of the patches in the current global
triangulation.

The triangulation of each patch is oriented so
that the nodes of each triangle are ordered in a
counter-clockwise order with respect to the param-
eter space triangulation. When a new patch tri-
angulation is added it may be necessary to change
the orientation of the triangulation to ensure that
the normal to each triangle points in a consistent
direction.

Figure (4) shows a global triangulation computed
for a CAD description of a diesel engine. This ex-



ample shows that a relatively coarse triangulation est triangle to determine the closest surface patch
can be computed. The coarseness of the triangu- and project onto the surface patch.
lation is determined by user-specified tolerance.

Given a good initial guess as to the closest triangle
to pt, we find the closest point on the global tri-
angulation we use a walking method. The walklng
method starts at a given triangle and marches to
a neighboring triangle that is closer to the target
point. This marching continues until it reaches

Figure 5. Surface patches and global triangulation
for the stern of a tanker.

4. PROJECTING POINTS ONTO THE

PATCHED SURFACE

The global triangulation for a patched surface
can be used to define a fast projection algorithm.
Given a target point, pt, in space near the sur-
face we wish project the point onto the surface,
i.e. we want to find the closest point on the sur-
face to a given point, defined in some norm. This
projection algorithm is used by the hyperbolic sur-
face grid generator in Overture in order to build
structured grids on the surface. The projection al-
gorithm consist of two steps. First find the closest
point on the triangulation. Secondly, uses the clos-

the boundary of the triangulation or else reaches
an extremal triangle. An extremal triangle will
be one where the line passing through the target
point in the direction normal to the triangle face
intersects the triangle. An extremal triangle could
be a local maximum, a local minimum or a saddle
point in the distance from the target point to the
surface. We rely on the initial guess being good
enough and the triangulation to be sufficiently fine
for this walking method to give a reasonable an-
swer.

If we do not have an initial guess we use a global
search to find the closest point on the triangula-
tion. The global search uses an alternating-digital-
tree (ADT) tree in which we save the bounding
boxes for all triangles on the global mesh. An
ADT tree is a special type of binary search tree.
We look for the intersection of a box around the
target point with the triangle bounding boxes; this
will determine potential triangles to check. The
ADT tree is a fast way to answer this query. Given
a list of potential triangles we check each one to de-
termine the closest point. The only parameter in
this search is the size of the bounding box around
the target point. It should not be too large nor
too small. We usually start with a safe value and
then increase or decrease the box size depending
on the number of intersections found.

Each triangle on the global triangulation lies on
exactly one surface-patch. Once the closest tri-
angle has been found we then suppose that the
closest point on the surface will lie on the patch
pointed to by the triangle. This assumes that the
surface triangulation resolves the surface to a rea-
sonable degree. If the target point lies very near
the boundary between two patches it could be that
the true projected point is on the neighboring
patch. For now we have ignored this possibility,
although it would be possible to deal with this
case. For our purposes so far it doesn’t seem to be
an issue.

5. HYPERBOLIC SURFACE GRID

GENERATION

Structured surface grids can be generated using
hyperbolic grid generation. This approach was de-



veloped by Steger, Chan and Buning [5, 3, 4] and
is also available in Gridgen, see Steinbrenner and
Chawner [10]. We have implemented our own ver-
sion within the Overture framework [8]. Rather
than have separate codes for surface and volume
grid generation we instead have a single program
that can generate 2D or 3D volume grids and 3D
surface grids. The algorithms in all cases are ba-
sically the same. For surface grid generation we
have the additional “boundary condition” that the
grid points should lie on the defining boundary
surface, which we denote by C(x) = O.

Let (r, t) denote the parameter space (computa-
tional) coordinates. Instead of taking parameter
space to be the unit cube we instead take the grid
spacing in parameter space to be 1, Ar = At = 1.
The basic marching equations to determine the
surface grid x(r, t) given the initial curve x(r, O)
are defined by the hyperbolic PDE

xt = S(r, t)n(r, t)

x(r, O) = xo (r) , initial curve

C(x(r, t) = O , grid is constrained to C(x) = O

Ii(x(r, t)) = O , boundary conditions

where

‘(r’t)=II;;:11, normal to the front

n~ : normal to the surface C at x

S(r, t) : scalar speed function

and the norm II.IIis defined by llf112E f f. These
equations march the grid in the direction locally
orthogonal to the current front. The parameter t
is a time like variable. At each step in time we
generate a new grid line.

Note that the normal to the front, n, is the march-
ing direction for the front and should not be con-
fused with the, ns, the normal to the surface we
are marching over. The speed function S(r, s, t)
determines how fast the front propagates; it can
depend on local properties of the front. Smooth-
ing is also added to the equations so we actually
solve a parabolic equation of the form

These parabolic equations are solved in a fully im-
plicit method with an approximate factorization
requiring the formation and solution of a block
tridiagonal matrix at each step.

Figure (6) show an example of growing a surface
grid over a CAD surface. The user may optionally
project onto the original CAD surface or simply
project onto the triangulation. The original sur-
face description could also just be a triangulation.

The projection algorithm is altered when the un-
derlying surface is not smooth, to allow marching
around corners.

Figure 6. The hyperbolic surface grid generator uses
the fast projection algorithm to grow surface grids.
The triangulation is used to project the points onto
the actual CAD geometry.

xt = S(r, t)n + c(r, t)xrr
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of partial differential equations, J. Comp.
Phys., 90 (1990), pp. 1–64.

Figure 7. Overlapping grid generated on a CAD ge-
ometry. Most grids were generated with the hyper-
bolic grid generator.
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